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A new compact isokinetic probe to measure total water content in a wind tunnel 

environment has been developed.  The probe has been previously tested under 

altitude conditions. This paper presents a validation of the probe under a range of 

liquid water conditions at sea level in the NASA Glenn Icing Research Tunnel and 

with ice crystals at sea level at the NRC wind tunnel.  The compact isokinetic probe 

is compared to tunnel calibrations, hot wire probe and a flight version of the 

isokinetic probe.   

Nomenclature 

A = area (m2) 

AOA = angle of attack (degrees) 

F = feed rate (cm/s) 

I = ice ingestion rate (g/s) 

IKF = isokinetic factor 

IKP = isokinetic total water content probe 

IWC  = ice water content (g/m3) 

LWC  = liquid water content (g/m3) 

MVD =  mean volume diameter (µm) 

MW =  multi-wire probe 

ṁ =  mass flow (kg/s) 

p = pressure (kPa) 

ρ = density (kg/m3) 

T = temperature (°C) 

TWC =  total water content (liquid and ice) (g/m3) 

V = speed (m/s) 

ω = specific humidity (gwater/kgdry air) 

 

 

Subscripts 

corr = corrected for air speed 

inlet = at the inlet to the IKP 

meas = measured 

nom = nominal air speed (150 or 80 m/s) 

o = total or stagnation conditions (no subscript implies static conditions) 

∞ =  freestream conditions 

                                                           
1 Research Officer, Icing, AIAA Senior Member. 
2 Technical Officer, Icing. 
3 Aerospace Engineer, Icing Branch, AIAA Senior Member. 

https://ntrs.nasa.gov/search.jsp?R=20170006540 2020-05-10T01:20:28+00:00Z
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I. Introduction 

The current state of the art for measuring total water content (TWC) in high altitude, glaciated or mixed phase 

aircraft icing environments uses an isokinetic probe (IKP) to sample the atmosphere.   The development of this 

technology was necessary to overcome inaccuracies associated with hot wire TWC probes as they are designed for 

traditional super cooled liquid water icing and can significantly underestimate the TWC in an ice crystal icing (ICI) 

environment.  The original flight IKP was developed by the National Research Council Canada (NRC) in 

cooperation with Environment Canada (EC) with contributions from Science Engineering Associates, Inc. (SEA).  

This probe was developed to be utilized on flight test aircraft to measure TWC in the atmosphere as reported in 

previous papers1-5.  In 2013, SEA, with NRC as a partner, led a NASA-contracted effort to downsize the original 

flight IKP so it could be used on the Service des Avions Français Instrumentés pour la Recherche en Environnement 

(SAFIRE) Falcon 20 aircraft.6.  This downsized flight IKP is referred to as the IKP2 in this paper.  The IKP2 has 

been extensively ground tested in supercooled liquid and high concentrations of ice crystals and was successfully 

used in three flight campaigns to measure TWC in deep convective ICI environments at high altitude.  

The need for this capability to ensure accurate inflight atmospheric TWC measurements also exists for icing wind 

tunnels (IWT) that reproduce ICI environments.  Therefore, NRC developed an IKP with a compact sampling head 

shown in Figure 1 and is referred to as the compact IKP (CIKP).  The sampling head is mounted in the tunnel flow 

and is traversable throughout the cross-section with the other components of the CIKP system located remotely, 

outside of the tunnel.  This new system is based on the existing IKP2 flow path technology developed by NRC and 

is intended for operation in wind tunnels at flight representative pressures, temperatures and Mach numbers.  It also 

has an extended TWC range compared to the flight versions as tunnels are often required to exceed values of TWC 

seen in the atmosphere, often by a factor of 2 or more to account for the concentration that occurs around the 

aircraft.  In addition to being useable in tunnels, the compact size also allows for simpler installation on aircraft 

where there is insufficient structure or space to support the larger flight IKP versions, an example of which are flight 

test aircraft having only window penetrations for probe mounting. 

Although the impetus for this technology came from the need to measure TWC in an ICI environment, this 

technology will also measure TWC in a liquid water environment such as traditional super cooled liquid water icing 

and is an ideal technology for super cooled large droplet (SLD) icing, another application where hot wire probes can 

have difficulty obtaining accurate measurements.  In 2014 the probe was functionally checked and validated in 

NRC’s Research Altitude Test Facility in its ice crystal configuration7.  Subsequently, the probe was tested in sea 

level facilities.  Liquid water testing was performed at the NASA Glenn Icing Research Tunnel (IRT) and ice crystal 

testing at the National Research Council Canada (NRC) ice crystal tunnel in building M7. 
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Figure 1.  Compact isokinetic probe sampling head 

II. Super Cooled Liquid Water testing 

The compact IKP was tested at the NASA IRT in October 2015.  Following two days of testing, the CIKP was 

replaced with the IKP2 owned by NASA6.  The intention of testing with the IKP2 was to confirm the test conditions 

for the compact IKP.  The test program covered a range of tunnel calibration liquid water contents (LWC) from 0.5 

to 4 g/m3, median volume diameters (MVD) from 15 to 266 μm, and airspeeds from 51 to 154 m/s.  The total 

temperature and pressure was maintained near -10°C and near sea level pressure.  The compact IKP was also tested 

at a range of isokinetic factors (IKF) to determine the effect of off-design operation on the results.   

A. Experimental Set Up 

The CIKP was mounted on the tunnel floor with the inlet 0.91 m (36 inches) from the floor and 1.37 m (54 

inches) from the starboard wall (the starboard wall is the south wall or the pilot eye view left wall). The CIKP is 

shown installed in the IRT prior to testing in Figure 2.  The upper 0.36 m (14 inches) of the CIKP support mast was 

heated to prevent ice accretion.  The background humidity probe is also shown and is installed 0.97 m (38 inches) 

from the port wall with the inlet approximately 6.4 cm (2.5) from the top wall. 
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Figure 2. CIKP installed in IRT 

 

A Science Engineering Associates (SEA) multi-wire probe (MW) was also installed concurrently with the CIKP 

to provide a real-time diagnostic measurement of the IRT cloud conditions. The MW was located at 0.91 m (36 

inches) from the ceiling and 0.99 m (39 inches) from the starboard wall.  The MW was approximately 0.38 m (15 

inches) lateral offset from the CIKP.  The spatial discrepancy means that a direct comparison of the MW and the 

IKP was not possible but the IRT calibration indicates that the LWC difference should be less than 10%.  The MW 

results were corrected using the procedure developed by Rigby et al.8 to account for the collection efficiency of the 

MW probe.  No attempt was made to correct the MW result for the difference in LWC at its location and the center.   

After the CIKP testing was completed, it was removed and the IKP2 was installed. The IKP2 was installed with 

the inlet near the tunnel centerline (1.37 m (54 inches) from the port wall and 0.92 m (36.3 inches) from the floor).  

This is within 0.75 cm (0.3 inch) of the location of the CIKP inlet. The MW probe remained in the same position as 

with the CIKP testing. 

 

B. Results 

LWC sweeps were performed at air speeds of 51, 77 and 103 m/s.  The most comprehensive was performed at 

77 m/s and the results are presented in Figure 3.  This differs from the data presented by Strapp et al.6 who examined 

the IKP TWC relative to the tunnel values.  The objective was to compare the CIKP to the IKP2 so the results were 

examined relative to the MW.  Since the CIKP and IKP2 were tested at different times the MW would capture any 

random variations in the tunnel behavior.  Therefore, the TWC for the CIKP and IKP2 are plotted against the TWC 

from the MW.  The tunnel LWCs, as reported by the IRT data system, are also presented for comparison.  The LWC 

reported by the IRT data system is based on the 2015 tunnel calibrations and the real time measurement of nozzle 

and tunnel conditions. 

The ideal line is where the MW TWC matches the TWC on the y-axis.  As expected, the tunnel TWCs closely 

match the MW, since the tunnel calibration used the MW probe9.  As the CIKP and the IKP2 were tested on separate 

days there is a corresponding set of tunnel LWC for each instrument.  The CIKP and the IKP2 match each other 

very closely but are significantly higher than the MW and tunnel values.  Figure 4 and Figure 5 present the data for 
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the LWC sweeps at 51 and 103 m/s.  The data sets are smaller than at 77 m/s but the results are similar.  The CIKP 

and IKP2 match very closely but are larger than the tunnel calibration values.  The linear coefficients for the least 

squares fits are given in Table 1 with the 95% confidence intervals.  The confidence intervals for the 51 and 103 m/s 

data sets are large due to the small sample size.  The ideal line where the probe TWC matches the tunnel TWC 

would have a slope of 1 and a y-intercept of 0. If the probe differs from the tunnel by a constant ratio the y-intercept 

should be 0 regardless of the slope.  If the least intercept is not 0 it indicates that the probe has an offset error or the 

ratio of the probe TWC to the tunnel is not consistent.  This could be caused by saturation of the probe at higher 

TWCs.  As the water builds up in the probe it reduces the amount measured and changes the ratio of measured 

TWCs.  The least squares fit to both IKP data sets almost pass through (0,0), as expected, with the 95% CI on the y-

intercept including 0 with a wide margin.   

 

Table 1. Least squares coefficients with 95% confidence intervals for LWC sweeps for IKP measured TWC 

versus MW measured TWC 

Air Speed (m/s) Probe 
Slope y-intercept 

Coefficient 95% CI Coefficient 95% CI 

51 

CIKP 
1.19 

1.30 

1.08 
0.04 

0.34 

-0.25 

IKP2 
1.14 

1.43 

0.93 
0.12 

0.87 

-0.70 

77 

CIKP 
1.19 

1.25 

1.12 
-0.03 

0.10 

-0.17 

IKP2 
1.16 

1.25 

1.07 
-0.01 

0.17 

-0.19 

103 

CIKP 
1.14 

1.20 

1.09 
-0.01 

0.06 

-0.07 

IKP2 
1.20 

1.77 

0.62 
-0.19 

1.08 

-1.46 

 

 
Figure 3. TWC results under liquid water conditions at To=-10°C, po=100 kPa, V=77 m/s and nominal 

MVD=22 µm with least squares fit lines for IKP results 
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Figure 4. TWC results under liquid water conditions 

at To=-10°C, po=100 kPa, V=51 m/s and nominal 

MVD=22 µm with least squares fit lines for IKP 

results 

 
Figure 5. TWC results under liquid water conditions 

at To=-10°C, po=100 kPa, V=103 m/s and nominal 

MVD=23 µm with least squares fit lines for IKP 

results 

 

Two MVD sweeps were performed at 77 m/s and 103 m/s.  The results at 77 m/s are presented in Figure 6 for the 

CIKP inlet at a 0° angle of attack (AOA) and a 15° AOA.  The TWC at 15° AOA was corrected to account for the 

reduced area perpendicular to the flow by dividing by the cosine of 15°.  This was to determine the error due to 

changes in flow at the inlet rather than the obvious error due to a smaller collection area.  The uncorrected values 

fall significantly below the 0° AOA.  The corrected values match closely, but generally fall slightly below the 0° 

AOA, indicating that the distorted flow around the inlet is causing a reduction in the collection efficiency.  If the 

probe is operated with a significant AOA then the dominate error is that due to the reduced collection area.  There 

does not appear to be any consistent trend with respect to MVD in the CIKP response compared to the MW.   

A 0° AOA MVD sweep was also performed at 103 m/s and the results plotted versus Stokes number in Figure 7.  

Stokes number was chosen as the independent variable because it is related to the probe collection efficiency and the 

geometry of the probe was constant as all tests were at 0° AOA.  The smaller the Stokes number the more closely 

the particles follow the streamlines.  The Stokes number was calculated identically to Davison et al.10.  A value of 

one falls between the particles following the streamlines and entering the probe regardless of the air flow.   

The CIKP, IKP2 and tunnel all show an increasing trend with increasing Stokes number.  Both the IKPs and the 

tunnel calibrations all show similar increasing trends with Stokes number which may indicate that it has something 

to do with the MW probe measurement.  Possibly the distribution in the tunnel is changing with the Stokes number 

resulting in a different reading at the MW location since the IKPs and tunnel calibrations are all nominally at the 

center while the MW was 38 cm (15 inches) off center.  Another possibility is additional splashing causing losses 

from the MW at that high speed and at the larger Stokes numbers which correspond to larger MVDs. 
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Figure 6. CIKP TWC divided by the corresponding MW TWC with varying MVD at To= -10°C, po=100 kPa, 

V=77 m/s and nominal LWC=0.54 g/m3 

 

 
Figure 7. TWC divided by the corresponding MW TWC varying Stokes Number at To=-10°C, po=100 kPa, 

V=103 m/s, LWC=0.74 g/m3 
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A sweep of tunnel velocities was also performed at an average MVD of 22 µm and 1.9 g/m3 LWC.  The TWC 

results normalized by the MW TWC are presented in Figure 8.  Excepting the lowest speed a decreasing trend is 

seen with increasing air speed for both the CIKP and the IKP2.  A similar decreasing trend is seen for the tunnel 

calibration LWCs indicating that the trend may be a function of the tunnel LWC distribution at different air speeds, 

but, with exception of the 155 m/s case, the LWC variation is within ±10% tolerance indicated in IRT calibration 

reports9.    When plotted versus Stokes number the trend is not apparent so it is dependent on air speed not on the 

capture efficiency of the probes. In this case the IKP2 and CIKP match very well.  

 

 
Figure 8. TWC divided by the corresponding MW TWC with varying air speed at To=-10°C, po=100 kPa with 

average MVD=22 µm and LWC =1.9 g/m3 

 

The effect of IKF on the CIKP results was evaluated at the IRT.  The IKF is the ratio of air mass flow through the 

inlet to the air mass flow passing through an equivalent area in the freestream as given by eqn. (1).  Two sweeps of 

IKF were performed at 77 m/s and 2 g/m3 LWC.  The first at an MVD of 15 µm and the second at 45 µm 

corresponding to Stokes numbers of 5 and 46.  The measured TWC was corrected by multiplying the measured or 

uncorrected TWC by the IKF shown by eqn. (2).   

 
IKF =

ṁIKP

A𝑖𝑛𝑙𝑒𝑡𝑉∞𝜌∞
 (1) 

 
𝑇𝑊𝐶∞ = IKF ∙ 𝑇𝑊𝐶𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  (2) 

The correction to TWC assumes that all the droplets continue straight into the probe regardless of the IKF10.  If 

some of the droplets follow the streamlines and do not enter the probe, the correction will over compensate.  At high 

speeds and altitudes with large ice particles, Stokes near 2,500, it was shown that the compensation is accurate7.  For 

this test, the IKF was varied from 0.7 to 1.3, well beyond the IKF that would be seen under normal operation.  The 

control system maintains the IKF within 0.98 and 1.02 and is usually between 0.99 and 1.01.  Under high speed 

conditions the probe is sometimes unable to maintain the required flow and the IKF can drop below 0.9.  The results 

of the IKF sweep are presented in Figure 9.  The TWC is normalized by the TWC at an IKF=1 to show the relative 
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changes.  The uncorrected TWC varies significantly with the IKF but when the correction is applied the variation is 

reduced.  The correction overcompensates since not all the particles that would enter the probe isokinetically 

actually enter the probe.  Some follow the streamlines more closely and divert around the inlet at sub isokinetic flow 

or are drawn into the probe at super isokinetic flow.  As would be expected the 15 µm sweep is more over corrected 

since the Stokes number is lower and the particles are more likely to follow the streamlines.  However, with an IKF 

between 0.9 and 1.1 the error in the correction is within 2.5%, based on the slope of the least squares fit.  Increasing 

the particle size to 45 µm reduces the error to 1.5%.  Forcing the least squares fit through (1,1) does not change the 

slope within 2 significant digits. 

 

 
Figure 9. TWC divided by TWC at an IKF=1 with varying IKF at To= -10°C, po=100 kPa  with average 

V=77 m/s and LWC =2 g/m3 for sweeps with MVD=15 µm and 45 µm.  Least squares fits to the corrected 

data are shown 

 

An extremely harsh condition was run to ensure the CIKP anti-icing system was adequate.  The average speed 

was 152 m/s, total temperature was -10°C, MVD was 21 µm and the tunnel LWC was 2.7 g/m3.  The transient 

results are presented in Figure 10.  For the average results presented previously the sample was taken from 20 s after 

the spray was turned on to 2 s before it was turned off.   Typically the sprays were on for 3 minutes.  During the run 

no icing of the inlet was observed.  Inlet icing events restrict the airflow into the IKP and the isokinetic factor drops 

off until the ice sheds and then it quickly recovers before dropping off again in a repeating cycle.  Figure 10 shows 

this cycle was not present during the test, supporting the visual observations.   

Due to the high speed and water content some water circulated around the tunnel as ice.  As the test continues this 

appears as a rise in TWC, clearly seen in Figure 10, while the water delivered by the tunnel remains constant.  The 

rise in TWC from the start of the spray to the finish is approximately 1.3 g/m3 which should be the quantity of ice 

circulating around the tunnel.  Immediately after the spray is stopped the remaining TWC should be due to only the 

circulating ice and it was found to also be 1.3 g/m3.  Once the spray is off, the ice falling out is no longer being 

replaced and the TWC continues to fall.  Two spray bar systems were used to obtain the high LWC required for this 

test and at the end they were turned off several seconds apart.  This drop in LWC is clearly evident in final portion 

of the spray.  The background tunnel humidity is also shown in Figure 10.  It starts at 1.25 g/kg which is above the 

static saturation level of 0.75 g/kg indicating that the air is supersaturated.  However, it is below the total saturation 

level of 1.7 g/kg, as expected.  Initially the background humidity rises, presumably due to evaporation in the slow 

moving section of the tunnel near the spray mast which is near the total conditions.  After reaching a peak near 50 s 
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the humidity begins to fall.  A possible explanation is the additional ice particles providing a greater surface area for 

the supersaturated humidity to condense out on. 

 
Figure 10. Transient results at V=152 m/s, To=-10°C, po=100 kPa, MVD=22 µm and LWC =2.7 g/m3 

III. Ice Crystal Testing 

The compact IKP was tested and validated in the NRC sea level ice crystal tunnel, located in building M7 at the 

Ottawa facilities in February 2016.  The IKP2 had been tested in the same facility in January 2016 and ice capture 

cylinders were used to measure the ice water content (IWC)6.  The results from the IKP2 will be used to compare to 

the CIKP.    

C. Experimental Set Up 

The tests were performed over 2 days with nominal air speeds ranging from 76 m/s to 148 m/s and total 

temperatures from -19°C to -9°C.  The measured IWC ranged from 0.6 to 12.7 g/m3.  The tunnel is supplied with ice 

fed from four chutes shown in Figure 11.  Figure 12 provides the overall layout of the tunnel.  The ice crystal 

distribution is known to be non-uniform and the test section ice distribution has been mapped at a velocity of 

150 m/s11.  The ice was top quality clinebell ice supplied by Iceculture Inc. and is typically used for ice carving.  It is 

free of air bubbles and other impurities, and has consistent density so the IWC is assumed to be proportional to the 

feed rate into the saw. Crystals were produced by grinding blocks of ice and the resulting median volume diameter 

ranged from 200 to 310 μm which increases with the ice saw feed rate11. 

The background humidity in the test section is required for the IKP to calculate the IWC.  It was sampled using a 

rear facing tube with a flared inlet that is the NRC Gas Turbine Laboratory standard for measuring background 

humidity in icing tunnels.  It is shown installed in the tunnel along with the CIKP in the center position in Figure 13.  

The probe could be manually traversed along the horizontal axis but was positioned at the tunnel center for the 

results presented here. 
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Figure 11.  Inlet of NRC wind tunnel viewed from downstream position 

 

 
Figure 12.  NRC wind tunnel layout 
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Figure 13. Test section configuration with flow in to the page 

 

 

D. Results 

To account for variations in air speed the TWC measured by the IKP was corrected to nominal air speeds with 

equation (3).  As the air speed increases the corrected TWC also increases.  This compensates for the fact that as the 

tunnel speed increases so does the volume flow of air and for a given feed rate of ice the TWC will decrease.  This 

allows runs at different air speeds to be compared.  Each sample was averaged over a different period time as the ice 

on time was limited by the feed rate and the length of the block of ice.  The sample time was started once the ice 

flow had stabilized and ended approximately 2 seconds before the ice feed was ended.  All the data within this time 

period was taken. 

  

TWCcorr = TWCmeas

Vair
Vair,nom

 

 

(3) 

Figure 14 shows the measured TWC from the CIKP across the range of feed rates near 145 m/s.  The TWC is 

corrected to a nominal air speed of 150 m/s which was the standard speed for previous testing.  Two samples were 

taken at each feed rate set point.  The first set of samples was taken starting at the lowest feed rate and increasing to 

the highest.  Once the first set was obtained sampling was repeated, again starting at the lowest feed rate and 

increasing to the highest. 

The least squares line of best fit to the CIKP results almost passes through the origin as expected since at 0 feed 

rate the TWC should also be 0.  The fit is very linear, also as expected since the feed rate is directly proportional to 

the ice entering the tunnel and the TWC.  If the CIKP was saturating at higher IWC the curve would be expected to 

drop off at the high feed rates.  For comparison the least squares fit to the data for the IKP2, obtained by Strapp et 

al.6 is also presented.  The fit presented here does not match that presented by Strapp et al. as the TWC correction is 

slightly different.  The CIKP measures approximately 1% lower the IKP2 based on the linear best fits.  The 

measurement uncertainty on the CIKP results shown in Figure 14 range from 3.6% at the lowest TWC to 2.3% at the 

highest based on the method presented by Davison et al.10  The confidence interval for the best fit line for the CIKP 

is presented in Table 2.  The 95% confidence interval on the CIKP result includes the IKP2 result. Given the 

instrument uncertainty and the uncertainty due the variation in the results the CIKP and IKP2 results and the 

variation in the tunnel operation, the IKP2 and CIKP were considered to match. 

 

Humidity 

sampling 

head 

Mount for 

IKP2 from 

previous test 

CIKP 



 

American Institute of Aeronautics and Astronautics 

 

13 

Table 2. Least squares linear best fit to CIKP and IKP2 results at 150 m/s with the upper and lower 95% 

confidence intervals for the CIKP 

Instrument 
Corrected Air Speed 

(m/s) 
Slope (TWC/F) TWC-intercept 

CIKP 150 m/s 0.064 
0.068 

0.02 
0.23 

0.059 -0.19 

IKP2 150 m/s 0.065 -0.01 

CIKP 80 m/s 0.148 
0.166 

-0.59 
-0.19 

0.131 -0.98 

 

 

 
Figure 14. Corrected TWC versus ice feed rate measured by CIKP near 145 m/s 

  

TWC was also measured with the CIKP near 80 m/s air speed.  In this case the TWC was corrected to a nominal 

air speed of 80 m/s and the results are presented in Figure 15.  The line of best fit does not come as close to the 

origin as at 150 m/s but with a single set of data, and no comparison instrument at this speed, it is difficult to make 

any conclusions, but if combined with the data set at 150 m/s more can be determined.   
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Figure 15. Corrected TWC versus corrected ice feed rate measured by CIKP near 80 m/s 

 

To compare the results at 80 m/s to those at 150 m/s the ice ingestion rate needs to be considered.  The ice 

ingestion rate is the mass flow rate of ice into the CIKP.  Assuming that the relative distribution of ice across the 

tunnel area does not change with tunnel speed the ice ingestion rate should only depend on the ice feed rate.  For this 

comparison the results do not need to be corrected to a nominal speed as they are independent of the air speed.  This 

is presented in Figure 16.  The results below 60 cm/s feed rate match very well for both speeds.  Above 60 cm/s they 

show much greater variation.  This variation seems to be a tunnel behaviour as the results of Strapp et at.6 showed a 

large variation with both the IKP2 and ice capture cylinders above 60 cm/s.  At 50 cm/s the IKP2 found a 17% 

variation over four sample points and the ICC 18%.  Near the 60 cm/s feed rate the IKP2 found a 22% variation over 

four points and the ICC 29%.  With three samples the CIKP found a 5% variation near 50 cm/s and a 15% variation 

near 60 cm/s.  With large variations and small data sets, a single point can have a large effect on the line of best fit.  

In the region below 50 cm/s which showed greater stability in tunnel operation the results for 80 m/s and 150 m/s are 

very consistent indicating that the tunnel speed is not having an effect on the results.  In early versions of the IKP, 

saturation of the vaporiser was observed at 80 m/s and these results indicate that issue has been eliminated in this 

version of the IKP.  The limited data set at the higher feed rates does not indicate a saturation problem as the higher 

ingestion rates correspond to the lower speed while saturation would cause a lower ingestion rate. 
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Figure 16. Ice ingestion rate versus feed rate for 80 and 150 m/s 

 

Figure 17 shows the transient response of the IKP during a run.  The IKP TWC measurement increases once the 

ice grinder engages the ice block and the TWC measurement rapidly drops off once the ice grinder has been 

disengaged.  This indicates that no ice is left in the IKP which would result in a lower reading, due to the deposited 

ice, during the time the ice is flowing.  Some TWC is seen after the grinder has disengaged due to ice dislodging 

from the ice delivery system.  The large variations in ice flow are typical of the tunnel, especially at high feed rates 

such as this one, which is at the maximum of the system.  

 

  
Figure 17. TWC from IKP and ice feed rate with time at a tunnel speed of 147 m/s, To=-14°C 
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IV. Aerodynamic Testing 

The compact IKP flow path can be sealed enabling it to function as a pitot probe.  This allows the aerodynamic 

condition to be partially characterized when no dedicated pitot probe is available. This is useful as the IKP can be 

deiced under very severe conditions.  During the testing at the IRT, the IKP was rotated through 15 degrees and the 

variation in total pressure characterized.  Figure 18 shows the deviation from tunnel pressure, given by equation (4), 

versus the angle of attack (AOA) of the IKP.  Although there is a constant offset ranging up to about 0.15% it does 

not appear to depend on angle of attack up to 15°. 
 

 
Deviation =

poIKF − poTunnel
poTunnel

100% (4) 

 
Figure 18.  Deviation in total pressure measured by IKP compared to total pressure reported by the tunnel 

V. Conclusions and Future Work 

The CIKP was tested at the IRT under super cooled liquid conditions and in the NRC sea level ice crystal tunnel.  

During the TWC sweeps performed in each tunnel the CIKP matched the IKP2 within 3% for the best data sets 

(77 m/s at the IRT and the 145 m/s at NRC).  The remaining two LWC sweeps at the IRT matched within 4.5%.  

The CIKP showed no signs of saturation or of icing.  At lower Stokes numbers the TWC cannot be fully corrected 

for operation at IKFs not equal to 1 but at a Stokes number of 5 could be corrected to 2.3% of the TWC at IKF of 1 

for every 0.1 change in IKF and to 1.5% for a Stokes number of 45.  The total pressure measured was offset by 

0.15% from the total pressure reported by the IRT but independent of AOA up to 15°. 
Future work for the tunnel IKP includes modifying the leading edge heat to estimate LWC in mixed phase 

environments.  The objective is to be able to separate the TWC measured by the IKP into LWC and IWC 

components. 
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